PIC Tutorial Three - LCD Modules
 Download zipped tutorial files. 
 
 Tutorial 3.1 - requires Main Board and LCD Board. 
 ;LCD text demo - 4 bit mode
;Nigel Goodwin 2002
	LIST	p=16F628		;tell assembler what chip we are using
	include "P16F628.inc"		;include the defaults for the chip
	ERRORLEVEL	0,	-302	;suppress bank selection messages
	__config 0x3D18			;sets the configuration settings (oscillator type etc.)
		cblock	0x20			;start of general purpose registers
			count			;used in looping routines
			count1			;used in delay routine
			counta			;used in delay routine
			countb			;used in delay routine
			tmp1			;temporary storage
			tmp2
			templcd			;temp store for 4 bit mode
			templcd2	
		endc
LCD_PORT	Equ	PORTA
LCD_TRIS	Equ	TRISA
LCD_RS		Equ	0x04			;LCD handshake lines
LCD_RW		Equ	0x06
LCD_E		Equ	0x07
		org	0x0000
		movlw	0x07
		movwf	CMCON			;turn comparators off (make it like a 16F84)
Initialise	clrf	count
		clrf	PORTA
		clrf	PORTB
SetPorts	bsf 	STATUS,		RP0	;select bank 1
		movlw	0x00			;make all pins outputs
		movwf	LCD_TRIS
		bcf 	STATUS,		RP0	;select bank 0
		call	Delay100		;wait for LCD to settle
		call	LCD_Init		;setup LCD
		clrf	count			;set counter register to zero
Message		movf	count, w		;put counter value in W
		call	Text			;get a character from the text table
		xorlw	0x00			;is it a zero?
		btfsc	STATUS, Z
		goto	NextMessage
		call	LCD_Char
		call	Delay255
		incf	count, f
		goto	Message
NextMessage	call	LCD_Line2		;move to 2nd row, first column
		clrf	count			;set counter register to zero
Message2	movf	count, w		;put counter value in W
		call	Text2			;get a character from the text table
		xorlw	0x00			;is it a zero?
		btfsc	STATUS, Z
		goto	EndMessage
		call	LCD_Char
		incf	count, f
		goto	Message2
EndMessage	
		
Stop		goto	Stop			;endless loop
;Subroutines and text tables
;LCD routines
;Initialise LCD
LCD_Init	movlw	0x20			;Set 4 bit mode
		call	LCD_Cmd
		movlw	0x28			;Set display shift
		call	LCD_Cmd
		movlw	0x06			;Set display character mode
		call	LCD_Cmd
		movlw	0x0d			;Set display on/off and cursor command
		call	LCD_Cmd
		call	LCD_Clr			;clear display
		retlw	0x00
; command set routine
LCD_Cmd		movwf	templcd
		swapf	templcd,	w	;send upper nibble
		andlw	0x0f			;clear upper 4 bits of W
		movwf	LCD_PORT
		bcf	LCD_PORT, LCD_RS	;RS line to 0
		call	Pulse_e			;Pulse the E line high
		movf	templcd,	w	;send lower nibble
		andlw	0x0f			;clear upper 4 bits of W
		movwf	LCD_PORT
		bcf	LCD_PORT, LCD_RS	;RS line to 0
		call	Pulse_e			;Pulse the E line high
		call 	Delay5
		retlw	0x00
LCD_CharD	addlw	0x30
LCD_Char	movwf	templcd
		swapf	templcd,	w	;send upper nibble
		andlw	0x0f			;clear upper 4 bits of W
		movwf	LCD_PORT
		bsf	LCD_PORT, LCD_RS	;RS line to 1
		call	Pulse_e			;Pulse the E line high
		movf	templcd,	w	;send lower nibble
		andlw	0x0f			;clear upper 4 bits of W
		movwf	LCD_PORT
		bsf	LCD_PORT, LCD_RS	;RS line to 1
		call	Pulse_e			;Pulse the E line high
		call 	Delay5
		retlw	0x00
LCD_Line1	movlw	0x80			;move to 1st row, first column
		call	LCD_Cmd
		retlw	0x00
LCD_Line2	movlw	0xc0			;move to 2nd row, first column
		call	LCD_Cmd
		retlw	0x00
LCD_Line1W	addlw	0x80			;move to 1st row, column W
		call	LCD_Cmd
		retlw	0x00
LCD_Line2W	addlw	0xc0			;move to 2nd row, column W
		call	LCD_Cmd
		retlw	0x00
LCD_CurOn	movlw	0x0d			;Set display on/off and cursor command
		call	LCD_Cmd
		retlw	0x00
LCD_CurOff	movlw	0x0c			;Set display on/off and cursor command
		call	LCD_Cmd
		retlw	0x00
LCD_Clr		movlw	0x01			;Clear display
		call	LCD_Cmd
		retlw	0x00
LCD_HEX		movwf	tmp1
		swapf	tmp1,	w
		andlw	0x0f
		call	HEX_Table
		call	LCD_Char
		movf	tmp1, w
		andlw	0x0f
		call	HEX_Table
		call	LCD_Char
		retlw	0x00
Delay255	movlw	0xff		;delay 255 mS
		goto	d0
Delay100	movlw	d'100'		;delay 100mS
		goto	d0
Delay50		movlw	d'50'		;delay 50mS
		goto	d0
Delay20		movlw	d'20'		;delay 20mS
		goto	d0
Delay5		movlw	0x05		;delay 5.000 ms (4 MHz clock)
d0		movwf	count1
d1		movlw	0xC7			;delay 1mS
		movwf	counta
		movlw	0x01
		movwf	countb
Delay_0
		decfsz	counta, f
		goto	$+2
		decfsz	countb, f
		goto	Delay_0
		decfsz	count1	,f
		goto	d1
		retlw	0x00
Pulse_e		bsf	LCD_PORT, LCD_E
		nop
		bcf	LCD_PORT, LCD_E
		retlw	0x00
;end of LCD routines
HEX_Table  	ADDWF   PCL       , f
            	RETLW   0x30
            	RETLW   0x31
            	RETLW   0x32
            	RETLW   0x33
            	RETLW   0x34
            	RETLW   0x35
            	RETLW   0x36
            	RETLW   0x37
            	RETLW   0x38
            	RETLW   0x39
            	RETLW   0x41
            	RETLW   0x42
            	RETLW   0x43
            	RETLW   0x44
            	RETLW   0x45
            	RETLW   0x46
Text		addwf	PCL, f
		retlw	'H'
		retlw	'e'
		retlw	'l'
		retlw	'l'
		retlw	'o'
		retlw	0x00
Text2		ADDWF   PCL, f
            	RETLW   'R'
            	RETLW   'e'
            	RETLW   'a'
            	RETLW   'd'
            	RETLW   'y'
            	RETLW   '.'
            	RETLW   '.'
            	RETLW   '.'
            	RETLW   0x00
		end      
      
      
 
 
 
 Tutorial 3.2 - requires Main Board and LCD Board. 
 ;LCD 16 bit counter
;Nigel Goodwin 2002
	LIST	p=16F628		;tell assembler what chip we are using
	include "P16F628.inc"		;include the defaults for the chip
	ERRORLEVEL	0,	-302	;suppress bank selection messages
	__config 0x3D18			;sets the configuration settings (oscillator type etc.)
		cblock	0x20			;start of general purpose registers
			count			;used in looping routines
			count1			;used in delay routine
			counta			;used in delay routine
			countb			;used in delay routine
			tmp1			;temporary storage
			tmp2
			templcd			;temp store for 4 bit mode
			templcd2
        		NumL			;Binary inputs for decimal convert routine
	        	NumH	
        		TenK			;Decimal outputs from convert routine
	        	Thou	
        		Hund	
	        	Tens	
        		Ones	
		endc
LCD_PORT	Equ	PORTA
LCD_TRIS	Equ	TRISA
LCD_RS		Equ	0x04			;LCD handshake lines
LCD_RW		Equ	0x06
LCD_E		Equ	0x07
		org	0x0000
		movlw	0x07
		movwf	CMCON			;turn comparators off (make it like a 16F84)
Initialise	clrf	count
		clrf	PORTA
		clrf	PORTB
		clrf	NumL
		clrf	NumH
SetPorts	bsf 	STATUS,		RP0	;select bank 1
		movlw	0x00			;make all pins outputs
		movwf	LCD_TRIS
		bcf 	STATUS,		RP0	;select bank 0
		call	LCD_Init		;setup LCD
		clrf	count			;set counter register to zero
Message		movf	count, w		;put counter value in W
		call	Text			;get a character from the text table
		xorlw	0x00			;is it a zero?
		btfsc	STATUS, Z
		goto	NextMessage
		call	LCD_Char
		incf	count, f
		goto	Message
NextMessage	call	LCD_Line2		;move to 2nd row, first column
	
		call	Convert			;convert to decimal
		movf	TenK,	w		;display decimal characters
		call	LCD_CharD		;using LCD_CharD to convert to ASCII
		movf	Thou,	w
		call	LCD_CharD
		movf	Hund,	w
		call	LCD_CharD		
		movf	Tens,	w
		call	LCD_CharD
		movf	Ones,	w
		call	LCD_CharD
		movlw	' '			;display a 'space'
		call	LCD_Char
		movf	NumH,	w		;and counter in hexadecimal
		call	LCD_HEX
		movf	NumL,	w
		call	LCD_HEX
		incfsz	NumL, 	f
		goto	Next
		incf	NumH,	f
Next		call	Delay255		;wait so you can see the digits change
		goto	NextMessage
;Subroutines and text tables
;LCD routines
;Initialise LCD
LCD_Init	call	Delay100		;wait for LCD to settle
		movlw	0x20			;Set 4 bit mode
		call	LCD_Cmd
		movlw	0x28			;Set display shift
		call	LCD_Cmd
		movlw	0x06			;Set display character mode
		call	LCD_Cmd
		movlw	0x0c			;Set display on/off and cursor command
		call	LCD_Cmd			;Set cursor off
		call	LCD_Clr			;clear display
		retlw	0x00
; command set routine
LCD_Cmd		movwf	templcd
		swapf	templcd,	w	;send upper nibble
		andlw	0x0f			;clear upper 4 bits of W
		movwf	LCD_PORT
		bcf	LCD_PORT, LCD_RS	;RS line to 1
		call	Pulse_e			;Pulse the E line high
		movf	templcd,	w	;send lower nibble
		andlw	0x0f			;clear upper 4 bits of W
		movwf	LCD_PORT
		bcf	LCD_PORT, LCD_RS	;RS line to 1
		call	Pulse_e			;Pulse the E line high
		call 	Delay5
		retlw	0x00
LCD_CharD	addlw	0x30			;add 0x30 to convert to ASCII
LCD_Char	movwf	templcd
		swapf	templcd,	w	;send upper nibble
		andlw	0x0f			;clear upper 4 bits of W
		movwf	LCD_PORT
		bsf	LCD_PORT, LCD_RS	;RS line to 1
		call	Pulse_e			;Pulse the E line high
		movf	templcd,	w	;send lower nibble
		andlw	0x0f			;clear upper 4 bits of W
		movwf	LCD_PORT
		bsf	LCD_PORT, LCD_RS	;RS line to 1
		call	Pulse_e			;Pulse the E line high
		call 	Delay5
		retlw	0x00
LCD_Line1	movlw	0x80			;move to 1st row, first column
		call	LCD_Cmd
		retlw	0x00
LCD_Line2	movlw	0xc0			;move to 2nd row, first column
		call	LCD_Cmd
		retlw	0x00
LCD_Line1W	addlw	0x80			;move to 1st row, column W
		call	LCD_Cmd
		retlw	0x00
LCD_Line2W	addlw	0xc0			;move to 2nd row, column W
		call	LCD_Cmd
		retlw	0x00
LCD_CurOn	movlw	0x0d			;Set display on/off and cursor command
		call	LCD_Cmd
		retlw	0x00
LCD_CurOff	movlw	0x0c			;Set display on/off and cursor command
		call	LCD_Cmd
		retlw	0x00
LCD_Clr		movlw	0x01			;Clear display
		call	LCD_Cmd
		retlw	0x00
LCD_HEX		movwf	tmp1
		swapf	tmp1,	w
		andlw	0x0f
		call	HEX_Table
		call	LCD_Char
		movf	tmp1, w
		andlw	0x0f
		call	HEX_Table
		call	LCD_Char
		retlw	0x00
Delay255	movlw	0xff		;delay 255 mS
		goto	d0
Delay100	movlw	d'100'		;delay 100mS
		goto	d0
Delay50		movlw	d'50'		;delay 50mS
		goto	d0
Delay20		movlw	d'20'		;delay 20mS
		goto	d0
Delay5		movlw	0x05		;delay 5.000 ms (4 MHz clock)
d0		movwf	count1
d1		movlw	0xC7			;delay 1mS
		movwf	counta
		movlw	0x01
		movwf	countb
Delay_0
		decfsz	counta, f
		goto	$+2
		decfsz	countb, f
		goto	Delay_0
		decfsz	count1	,f
		goto	d1
		retlw	0x00
Pulse_e		bsf	LCD_PORT, LCD_E
		nop
		bcf	LCD_PORT, LCD_E
		retlw	0x00
;end of LCD routines
HEX_Table  	ADDWF   PCL       , f
            	RETLW   0x30
            	RETLW   0x31
            	RETLW   0x32
            	RETLW   0x33
            	RETLW   0x34
            	RETLW   0x35
            	RETLW   0x36
            	RETLW   0x37
            	RETLW   0x38
            	RETLW   0x39
            	RETLW   0x41
            	RETLW   0x42
            	RETLW   0x43
            	RETLW   0x44
            	RETLW   0x45
            	RETLW   0x46
Text		addwf	PCL, f
		retlw	'1'
		retlw	'6'
		retlw	' '
		retlw	'B'
		retlw	'i'
		retlw	't'
		retlw	' '
		retlw	'C'
		retlw	'o'
		retlw	'u'
		retlw	'n'
		retlw	't'
		retlw	'e'
		retlw	'r'
		retlw	'.'
		retlw	0x00
;This routine downloaded from http://www.piclist.com
Convert:                        ; Takes number in NumH:NumL
                                ; Returns decimal in
                                ; TenK:Thou:Hund:Tens:Ones
        swapf   NumH, w
	iorlw	B'11110000'
        movwf   Thou
        addwf   Thou,f
        addlw   0XE2
        movwf   Hund
        addlw   0X32
        movwf   Ones
        movf    NumH,w
        andlw   0X0F
        addwf   Hund,f
        addwf   Hund,f
        addwf   Ones,f
        addlw   0XE9
        movwf   Tens
        addwf   Tens,f
        addwf   Tens,f
        swapf   NumL,w
        andlw   0X0F
        addwf   Tens,f
        addwf   Ones,f
        rlf     Tens,f
        rlf     Ones,f
        comf    Ones,f
        rlf     Ones,f
        movf    NumL,w
        andlw   0X0F
        addwf   Ones,f
        rlf     Thou,f
        movlw   0X07
        movwf   TenK
                    ; At this point, the original number is
                    ; equal to
                    ; TenK*10000+Thou*1000+Hund*100+Tens*10+Ones
                    ; if those entities are regarded as two's
                    ; complement binary.  To be precise, all of
                    ; them are negative except TenK.  Now the number
                    ; needs to be normalized, but this can all be
                    ; done with simple byte arithmetic.
        movlw   0X0A                             ; Ten
Lb1:
        addwf   Ones,f
        decf    Tens,f
        btfss   3,0
        goto   Lb1
Lb2:
        addwf   Tens,f
        decf    Hund,f
        btfss   3,0
        goto   Lb2
Lb3:
        addwf   Hund,f
        decf    Thou,f
        btfss   3,0
        goto   Lb3
Lb4:
        addwf   Thou,f
        decf    TenK,f
        btfss   3,0
        goto   Lb4
        retlw	0x00
		end      
	  
      Tutorial 3.3 - requires Main Board and LCD Board. 
 ;LCD 16 bit counter - using LCD Busy line
;Nigel Goodwin 2002
	LIST	p=16F628		;tell assembler what chip we are using
	include "P16F628.inc"		;include the defaults for the chip
	ERRORLEVEL	0,	-302	;suppress bank selection messages
	__config 0x3D18			;sets the configuration settings (oscillator type etc.)
		cblock	0x20			;start of general purpose registers
			count			;used in looping routines
			count1			;used in delay routine
			counta			;used in delay routine
			countb			;used in delay routine
			tmp1			;temporary storage
			tmp2
			templcd			;temp store for 4 bit mode
			templcd2
        		NumL			;Binary inputs for decimal convert routine
	        	NumH	
        		TenK			;Decimal outputs from convert routine
	        	Thou	
        		Hund	
	        	Tens	
        		Ones	
		endc
LCD_PORT	Equ	PORTA
LCD_TRIS	Equ	TRISA
LCD_RS		Equ	0x04			;LCD handshake lines
LCD_RW		Equ	0x06
LCD_E		Equ	0x07
		org	0x0000
		goto	Start
HEX_Table  	ADDWF   PCL       , f
            	RETLW   0x30
            	RETLW   0x31
            	RETLW   0x32
            	RETLW   0x33
            	RETLW   0x34
            	RETLW   0x35
            	RETLW   0x36
            	RETLW   0x37
            	RETLW   0x38
            	RETLW   0x39
            	RETLW   0x41
            	RETLW   0x42
            	RETLW   0x43
            	RETLW   0x44
            	RETLW   0x45
            	RETLW   0x46
Text		addwf	PCL, f
		retlw	'1'
		retlw	'6'
		retlw	' '
		retlw	'B'
		retlw	'i'
		retlw	't'
		retlw	' '
		retlw	'C'
		retlw	'o'
		retlw	'u'
		retlw	'n'
		retlw	't'
		retlw	'e'
		retlw	'r'
		retlw	'.'
		retlw	0x00
Start		movlw	0x07
		movwf	CMCON			;turn comparators off (make it like a 16F84)
Initialise	clrf	count
		clrf	PORTA
		clrf	PORTB
		clrf	NumL
		clrf	NumH
SetPorts	bsf 	STATUS,		RP0	;select bank 1
		movlw	0x00			;make all pins outputs
		movwf	LCD_TRIS
		movwf	TRISB
		bcf 	STATUS,		RP0	;select bank 0
		call	LCD_Init		;setup LCD
		clrf	count			;set counter register to zero
Message		movf	count, w		;put counter value in W
		call	Text			;get a character from the text table
		xorlw	0x00			;is it a zero?
		btfsc	STATUS, Z
		goto	NextMessage
		call	LCD_Char
		incf	count, f
		goto	Message
NextMessage	movlw	d'2'
		call	LCD_Line2W		;move to 2nd row, third column
	
		call	Convert			;convert to decimal
		movf	TenK,	w		;display decimal characters
		call	LCD_CharD		;using LCD_CharD to convert to ASCII
		movf	Thou,	w
		call	LCD_CharD
		movf	Hund,	w
		call	LCD_CharD		
		movf	Tens,	w
		call	LCD_CharD
		movf	Ones,	w
		call	LCD_CharD
		movlw	' '			;display a 'space'
		call	LCD_Char
		movf	NumH,	w		;and counter in hexadecimal
		call	LCD_HEX
		movf	NumL,	w
		call	LCD_HEX
		incfsz	NumL, 	f
		goto	Next
		incf	NumH,	f
Next		call	Delay255		;wait so you can see the digits change
		goto	NextMessage
;Subroutines and text tables
;LCD routines
;Initialise LCD
LCD_Init	call 	LCD_Busy		;wait for LCD to settle
		movlw	0x20			;Set 4 bit mode
		call	LCD_Cmd
		movlw	0x28			;Set display shift
		call	LCD_Cmd
		movlw	0x06			;Set display character mode
		call	LCD_Cmd
		movlw	0x0c			;Set display on/off and cursor command
		call	LCD_Cmd			;Set cursor off
		call	LCD_Clr			;clear display
		retlw	0x00
; command set routine
LCD_Cmd		movwf	templcd
		swapf	templcd,	w	;send upper nibble
		andlw	0x0f			;clear upper 4 bits of W
		movwf	LCD_PORT
		bcf	LCD_PORT, LCD_RS	;RS line to 1
		call	Pulse_e			;Pulse the E line high
		movf	templcd,	w	;send lower nibble
		andlw	0x0f			;clear upper 4 bits of W
		movwf	LCD_PORT
		bcf	LCD_PORT, LCD_RS	;RS line to 1
		call	Pulse_e			;Pulse the E line high
		call 	LCD_Busy
		retlw	0x00
LCD_CharD	addlw	0x30			;add 0x30 to convert to ASCII
LCD_Char	movwf	templcd
		swapf	templcd,	w	;send upper nibble
		andlw	0x0f			;clear upper 4 bits of W
		movwf	LCD_PORT
		bsf	LCD_PORT, LCD_RS	;RS line to 1
		call	Pulse_e			;Pulse the E line high
		movf	templcd,	w	;send lower nibble
		andlw	0x0f			;clear upper 4 bits of W
		movwf	LCD_PORT
		bsf	LCD_PORT, LCD_RS	;RS line to 1
		call	Pulse_e			;Pulse the E line high
		call 	LCD_Busy
		retlw	0x00
LCD_Line1	movlw	0x80			;move to 1st row, first column
		call	LCD_Cmd
		retlw	0x00
LCD_Line2	movlw	0xc0			;move to 2nd row, first column
		call	LCD_Cmd
		retlw	0x00
LCD_Line1W	addlw	0x80			;move to 1st row, column W
		call	LCD_Cmd
		retlw	0x00
LCD_Line2W	addlw	0xc0			;move to 2nd row, column W
		call	LCD_Cmd
		retlw	0x00
LCD_CurOn	movlw	0x0d			;Set display on/off and cursor command
		call	LCD_Cmd
		retlw	0x00
LCD_CurOff	movlw	0x0c			;Set display on/off and cursor command
		call	LCD_Cmd
		retlw	0x00
LCD_Clr		movlw	0x01			;Clear display
		call	LCD_Cmd
		retlw	0x00
LCD_HEX		movwf	tmp1
		swapf	tmp1,	w
		andlw	0x0f
		call	HEX_Table
		call	LCD_Char
		movf	tmp1, w
		andlw	0x0f
		call	HEX_Table
		call	LCD_Char
		retlw	0x00
Delay255	movlw	0xff			;delay 255 mS
		goto	d0
Delay100	movlw	d'100'			;delay 100mS
		goto	d0
Delay50		movlw	d'50'			;delay 50mS
		goto	d0
Delay20		movlw	d'20'			;delay 20mS
		goto	d0
Delay5		movlw	0x05			;delay 5.000 ms (4 MHz clock)
d0		movwf	count1
d1		movlw	0xC7			;delay 1mS
		movwf	counta
		movlw	0x01
		movwf	countb
Delay_0
		decfsz	counta, f
		goto	$+2
		decfsz	countb, f
		goto	Delay_0
		decfsz	count1	,f
		goto	d1
		retlw	0x00
Pulse_e		bsf	LCD_PORT, LCD_E
		nop
		bcf	LCD_PORT, LCD_E
		retlw	0x00
LCD_Busy
		bsf	STATUS,	RP0		;set bank 1
		movlw	0x0f			;set Port for input
		movwf	LCD_TRIS
		bcf	STATUS,	RP0		;set bank 0
		bcf	LCD_PORT, LCD_RS	;set LCD for command mode
		bsf	LCD_PORT, LCD_RW	;setup to read busy flag
		bsf	LCD_PORT, LCD_E
		swapf	LCD_PORT, w		;read upper nibble (busy flag)
		bcf	LCD_PORT, LCD_E		
		movwf	templcd2 
		bsf	LCD_PORT, LCD_E		;dummy read of lower nibble
		bcf	LCD_PORT, LCD_E
		btfsc	templcd2, 7		;check busy flag, high = busy
		goto	LCD_Busy		;if busy check again
		bcf	LCD_PORT, LCD_RW
		bsf	STATUS,	RP0		;set bank 1
		movlw	0x00			;set Port for output
		movwf	LCD_TRIS
		bcf	STATUS,	RP0		;set bank 0
		return
;end of LCD routines
;This routine downloaded from http://www.piclist.com
Convert:                        ; Takes number in NumH:NumL
                                ; Returns decimal in
                                ; TenK:Thou:Hund:Tens:Ones
        swapf   NumH, w
	iorlw	B'11110000'
        movwf   Thou
        addwf   Thou,f
        addlw   0XE2
        movwf   Hund
        addlw   0X32
        movwf   Ones
        movf    NumH,w
        andlw   0X0F
        addwf   Hund,f
        addwf   Hund,f
        addwf   Ones,f
        addlw   0XE9
        movwf   Tens
        addwf   Tens,f
        addwf   Tens,f
        swapf   NumL,w
        andlw   0X0F
        addwf   Tens,f
        addwf   Ones,f
        rlf     Tens,f
        rlf     Ones,f
        comf    Ones,f
        rlf     Ones,f
        movf    NumL,w
        andlw   0X0F
        addwf   Ones,f
        rlf     Thou,f
        movlw   0X07
        movwf   TenK
                    ; At this point, the original number is
                    ; equal to
                    ; TenK*10000+Thou*1000+Hund*100+Tens*10+Ones
                    ; if those entities are regarded as two's
                    ; complement binary.  To be precise, all of
                    ; them are negative except TenK.  Now the number
                    ; needs to be normalized, but this can all be
                    ; done with simple byte arithmetic.
        movlw   0X0A                             ; Ten
Lb1:
        addwf   Ones,f
        decf    Tens,f
        btfss   3,0
        goto   Lb1
Lb2:
        addwf   Tens,f
        decf    Hund,f
        btfss   3,0
        goto   Lb2
Lb3:
        addwf   Hund,f
        decf    Thou,f
        btfss   3,0
        goto   Lb3
Lb4:
        addwf   Thou,f
        decf    TenK,f
        btfss   3,0
        goto   Lb4
        retlw	0x00
		end		
		
       | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||